Mathematics of Computing Mid Semester (Max Marks 40, Max Time 3h)

Indian Statistical Institute, Bangalore

March 2, 2018

- Q1. $(1 \times 10 = 10)$ True or false:
 - i If $L_1 = L_2 = \{\epsilon\}$ then the language formed by their concatenation: $L_1 \cdot L_2$ is not empty and is regular.
 - ii If L is a CFG with a deterministic PDA, then L is regular.
 - iii Regular languages have fewer strings in them than nonregular languages.
 - iv Every finite set of strings is regular.
 - v A DFA accepts L. We can modify it to accept L^* by making the initial state a final state and adding ϵ labeled edge from current final states to the initial state.
 - vi If a CFG produces a language L, the L is non-regular.
 - vii The well known CFL $\{a^n b^n\}$ is a subset of another language L. Therefore L cannot be regular.
 - viii The following grammar is regular:
 - $S \to aA$
 - $A \to Sb|b$
 - ix The language ww where $w \in \{0, 1\}^*$ is regular.
 - x There are NFAs that recognize languages that DFAs cannot.
- Q2. (3+3+4=10)
 - (a) If L is a regular language on $\{a, b\}$ show that $L^c = \{w, w \notin L\}$ is regular.
 - (b) Prove or disprove that if L_1 and L_2 are regular then the language $L_1 \setminus L_2$ (ie set difference) is regular.
 - (c) Consider the language L is the set of all strings of the form $a^i b^i c^i, i \ge 0$. Show that L is not regular.
- Q3. (2+3=5) Let L be the language of strings that have exactly two zeros or exactly two ones. Thus strings like $011001 \notin L$, while $110 \in L$ and $0110 \in L$.
 - (a) Give the regular expression for L.

- (b) Construct a DFA for the language.
- Q4. (3+2=5) Consider the language of well formed parenthesized expressions. For example "(()())()()" is well formed, but not ")()("
 - (a) Write a CFG for the language.
 - (b) For your grammar, give a parse tree for the string "(()())()()"
- Q5. (3+3=6)Consider the language that has all strings with equal number of 0s and 1s.
 - (a) Draw a PDA to recognize L.
 - (b) Write a CFG for L. You may, if you wish, use ideas from the PDA to inspire you.
- Q6. (4)Consider the following language: $L = \{a^n b^{2n} c^{3n}, n \ge 0\}$. Is it context free? If yes, construct a CFG. Else prove it is not context free using the pumping lemma.